mediately removed, homogenized in phosphate buffer, and incubated in a Warburg flask into which the radioactive amino acid had been introduced. A square of filter paper was placed in the center well containing 0.2 ml of 5% KOH to collect the ¹⁴CO₂. The flask was swept with oxygen and placed in the water bath at 37° C. After incubation, the filter paper was removed immediately, dried and counted.

The Tables (I and II) indicate that the ¹⁴CO₂ production from the DL-alanine by brain is about

one third that produced by kidney and about one half that produced by liver.

When the supernatant obtained by centrifugation of the homogenate is incubated similarly, it also displays appreciable capacity for DL-alanine dissimilation. Acetone powder may be used instead of fresh brain tissue.

TABLE I

14CO₂ PRODUCTION FROM LABELED

DL-ALANINE-I-14C BY VARIOUS RAT TISSUE

HOMOGENATES

TABLE II

14CO₂ PRODUCTION FROM LABELED
DL-ALANINE-I-¹⁴C BY RAT BRAIN
HOMOGENATE

Tissue	Counts of 14CO ₂ produced × 100 Counts of administered dose	Time of incubation	Counts of 14CO2 produced × 100	
			Counts of administered dose	
Brain	0.37	15 minutes	0.11	
Kidney	0.99	40 minutes	0.43	
Liver	0.64	65 minutes	1.11	
Spleen	0.02	118 minutes	1.60	
3lood	0.008			

Table 1:

Each incubation flask contained 1.5 g of tissue suspended in 2.0 ml of 0.1 M phosphate buffer (pH 7.4) (except the flask which contained 2.0 ml of fresh blood, drawn from the heart, in presence of substrate only) and 0.1 mg (1.2·10⁻³ mc) of DL-alanine. The flasks were incubated at 37° C for 45 minutes.

Table 2:

Each incubation flask contained 1.5 g of tissue suspended in 2.0 ml of 0.1 M phosphate buffer (pH 7.4) and 0.2 mg (2.4·10⁻⁸ mc) of DL-alanine. The flasks were incubated for indicated times.

Received February 3rd, 1953

THE UPTAKE OF \$2P IN THE FEMUR OF GROWING RACHITIC AND NORMAL RATS AS COMPARED WITH THE UPTAKE IN THE TOTAL SKELETON

by

V. CLAASSEN AND B. S. J. WÖSTMANN

Laboratory of Physiological Chemistry of the Municipal University of Amsterdam and Netherlands Institute of Nutrition, Amsterdam (Netherlands)

In a series of experiments, recently performed in this laboratory, we determined the uptake of inorganic ³⁸P in the femur of growing rachitic and normal rats. We were also interested in the amount of ³⁸P taken up by the total skeleton. As it is known that the uptake of ³⁸P is different for the various parts of the skeleton^{1,2}, it seems hazardous to calculate the total uptake of ³⁸P from the uptake in the femur on the basis of ³¹P content or weight, as some authors do^{3,4}. We, therefore, determined in a number of animals the uptake in both femur and total skeleton one hour after intraperitoneal injection. These data gave us an impression of the amount of ³⁸P to be expected in the total skeleton once the tracer content of the femur was known.

The animals, young white rats of the Wistar strain, had subsisted after weaning on a somewhat modified Steenbock Black rachitogenic diet containing 1.20 % Ca and 0.30 % P. The animals indicated as normal received a protecting amount of calciferol (1.05 microgram per week). One hour after injection of about 15 μ C of ³²P as Na₂H ³²PO₄ the animals were killed with ether.

After the skin had been removed and the internal viscerae taken out, the carcasses were brought into a 2% solution of a mixture consisting of 45% Na₂CO₃, 30% soap powder and 25% water (Gold-dust Washing Powder method⁵). The solution was subsequently heated till 96° C. After remaining on that temperature for about 5 minutes the rats were taken out and it proved comparatively easy to remove the soft tissue from the skeletons. The skeletons were dried at 100° C for three days. One femur was removed from each skeleton and both this femur and the rest were ashed at 600°C. The ashes were dissolved in HCl and analyzed for ³¹P and ³²P. The results are given in Table I.

TABLE I UPTAKE OF 32P IN THE FEMUR AND IN THE TOTAL SKELETON OF NORMAL AND RACHITIC RATS ONE HOUR AFTER INTRAPERITONEAL INJECTION

Rat No.	Weight g	Femur ³¹ P in percentage of total ³² P	Femur 32 P in percentage of	Percentage ^{\$2} P Percentage ^{\$1} P in femur
Kur IV.			total ** P	
1857 N	116	3.8	5.2	. 1.4
1846 N	123	3.7	5.0	1.3
1847 N	119	4.2	5.4	1.3
888 R*	92	2.8	4.4	1.6
904 R	97	2.8		
1858 R	118	3.2	5.2	1.6
t863 R	122	3.2	5.0	1.6
1855 R	120	3.6	6.2	1.7

^{*} sacrified 30 min after injection

Our data show that the uptake of ³²P by the femur in short time experiments is higher than that of the average skeleton, if calculated on the basis of ³¹P content. This is seen both in the rachitic and in the control group. The percentage of ⁸¹P found in the femur seems lower in the rachitic group. This difference does not show itself when comparing the 32P percentages. If we combine all the values found for the 32 P percentage in the femur (normal and rachitic) we obtain 5.2 \pm 0.2 (standard error). As this figure might be influenced by the somewhat higher values found for 1855 R we generally take a value of 5.0%. This agrees nicely with the value of 4.8% calculated from data obtained by Norris and Kisieleski⁸ with ⁴⁵Ca, using 250 gram Sprague Dawley rats.

Data obtained by Neuman *et al.*^{7,8} show that, after an initial rapid uptake of ³²P, the isotope

level of the femur increases only very slowly. The same was shown by Dols et al.4 to be true for the uptake in the total skeleton. Experiments in this laboratory proved that the initial rapid uptake is completed within the first 5-15 minutes after the injection of the tracer*. So we think it is reasonable to assume that the value of 5%, found for the 32P content of the femur as compared to the total content of the skeleton one hour after injection of the radiophosphate, may be applied in the whole range of "short time experiments" from about 15 minutes on. This enables us to calculate the isotope content of the total skeleton in these experiments by simply multiplying the amount found in one femur by a factor 20.

REFERENCES

- ¹ M. LE FEVRE MANLY, H. C. HODGE AND S. N. VAN VOORKIS, Proc. Soc. Exptl Biol. Med., 45 (1940) 70.
- 2 G. Hevesy, H. Levi and O. H. Rebbe, Biochem. J., 34 (1940) 532.
- ³ W. E. COHN AND D. H. GREENBERG, J. Biol. Chem., 123 (1938) 185.

 ⁴ M. J. L. Dols, B. C. P. JANSEN, G. J. SIZOO AND J. DE VRIES, Proc. Koninkl. Nederland. Akad. Wetenschap., 40 (1937) 547.
- ⁵ E. J. FARRIS AND J. Q. GRIFFITH, The rat in laboratory investigation. J.P. Lippincott Company, Philadelphia, U.S.A., 2nd Edition 1949, p. 467.
 - W. P. NORRIS AND W. KISIELESKI, Cold Spring Harbour Symposia Quant. Biol., 13 (1948) 164.
 - W. F. NEUMAN AND R. F. RILBY, J. Biol. Chem., 168 (1947) 545.
 - W. F. NEUMAN AND B. J. MULRYAN, J. Biol. Chem., 195 (1952) 843.

Received February 25th, 1953

^{*} To be published.